Mahanaxar: Quality of Service Guarantees In
High-Bandwidth, Real-Time Streaming Data Storage

Author(s) omitted
Organization(s) omitted

Abstract—Large radio telescopes, cyber-security systems mon-
itoring real-time network traffic, and others have specialzed data
storage needs: guaranteed capture of an ultra-high-bandwith
data stream, retention of the data long enough to determine
what is “interesting,” retention of interesting data indefinitely, Start Point
and concurrent read/write access to determine what data is
interesting, without interrupting the ongoing capture of incoming
data. Mahanaxar addresses this problem. Mahanaxar guararges
streaming real-time data capture at (nearly) the full rate d the
raw device, allows concurrent read and write access to the de&e
on a best-effort basis without interrupting the data capture, and
retains data as long as possible given the available storagé
has built in mechanisms for reliability and indexing, can sale
to meet arbitrary bandwidth requirements, and handles both
small and large data elements equally well. Results from our

prototype implementation shows that Mahanaxar provides bth)]])])
better guarantees and better performance than traditional file ~impossible to determine which data is worth saving untillwel

systems. after the fact.

The storage system for this model is best described
by “write-once, read-maybe,” or perhaps “write-once, read

From the mundane to the exotic, many applications requiigrely.” All data needs to be captured and (temporarilyjesto
real-time data capture and storage. Consumers wish todecgy real time, but the odds are good that it will never actually
television programs for later viewing, and can do so Withe needed, and can safely expire after a period of time. This
digital video recorders. Security personnel monitor arre s easily conceptualized as a ring buffer (figure 1): if théada
from cameras and sensors when guarding secure areas. 3Gt declared “interesting” within a set amount of timeisit
entists must capture experimental and observational dataQtomatically discarded to make room for new data. This fs no
their first and only attempt, from seismometers to telessopg gifficult problem on small scales, but presents a challenge
to test explosions. The base need is the same in all of th@ggen dealing with large amounts of data.
case — guaranteed real-time capture of streaming data — bujye created a prototype system, Mahanaxar, to address this
with greatly differing parameters. problem. Our first priority is to provide quality of service

In television, a standard NTSC/ATSC signal provides dagarantees for incoming data streams, ensuring that tee gso
at around 20 MB/s [1], a rate easily recorded by any standajflsaving and retrieving old data does not interfere with the
consumer grade hard drive. By contrast, the Large Hadrggh|-time capture of new data. We also have mechanisms for
Collider at CERN generates data on the order of 300 MBfg|iability and indexing, and discuss the problem of sciitstb
after filtering [2], utilizing a large backend system andi@b e will first present our design for this class of problem, and
network. The data rate of one-shot large scientific expertme then provide results that show superior performance torothe

may be enormous, limited only by the ability of a specializeghethods of managing this type of data.
data recording system to capture a burst of data all at once.

Sometimes this data is vitally important, at least for a time Il. BACKGROUND
and cannot be safely discarded. However, a large subseisof th This project was first conceived as a storage system for
data has the curious property of being mostly “worthlesgrovthe Long Wavelength Array (LWA) project [3]. The LWA
the long term. A security camera positioned to watch overis a distributed radio telescope currently under constoct
door does not generate a steady stream of “useful” data.idf southwestern New Mexico. The initial plan is for 53
somebody has attempted a break-in, then the data is usefeparate stations scattered widely over the desert. Eatibrst
Otherwise, there is rarely any practical use in retainingcard generates approximately 72.5 MB/s of data, for an overall
summarized by “nothing interesting happened.” Many typekata rate of slightly over 3.75 GB/s. This data is generated
of sensor data follow the same model, often summarized bgntinuously and without letup over the lifetime of the i
“nothing interesting here” with sporadic bursts of data thor Radio astronomy is one of several observational sciences
saving. Unfortunately for data storage purposes, it isnoftevhich generates large amounts of “useless” data: in this,cas

Old Data
Most Recent Data

Data about to Expire

Fig. 1. Ring Buffer Diagram

I. INTRODUCTION

apparently random radio noise. Since over a petabyte of neystems also have no convenient and automatic mechanism to

data is generated in just over three days, it is fortunate thexpire old data when capacity is low.

we can safely throw most of it away. However, it may not be There has been some quality of service work focused on

immediately apparent whether the data is useful or not unpitoviding guarantees of a certain service level from theagte

much later, and we are required to retain it for some timgystem, as in RT-Mach [9] and Ceph [10], but only to the

until an outside observer has time to decide whether the ddigree of categorizing traffic for an appropriately “faievel

is interesting, and whether it should be preserved. of service. Data streams can be guaranteed to receive acerta
As we explored this concept, we realized that there wep@rtion of system resources in both the short and long term,

many other applications which generate lots of “useles$d,dabut the guarantee is of the form “you will get X% of the time

but deem some of it interesting from time to time. Thereforevery Y time units,” rather than an explicit “you are guaesatt

we decided to develop a generalized model to address all s@chandwidth of Z.”

problems. Broadly speaking, we focused on two canonicalThe disk request scheduling system Fahradd [11] is capa-

real-world problems at opposite ends of our spectrum bfe of providing QoS guarantees within certain constraints

possibilities, with other example problems being derigdi Fahradd allocates a certain amount of disk head time to

and combinations of our two primes. a requesting process, and lets each process spend the disk

. . . i head time as it sees fit. Unfortunately for the purposes of

1) Fixed-size, non-indexed data: . ! ;)

V\}R'S problem, that guarantee is not quite strong enough: a

Fixed-size, non-indexed data is generated by the L ?rcentage of disk head time does not necessarily translate

prOje_ct, and by many types.of sensor systems n gener%‘r’ectly into bandwidth guarantees, and we need to guagante
It arrives at an absolutely fixed rate, never varying, a’}fj,
e latter rather than the former.

is only indexed on a single variable: time of generation.) . .
. : . Because we need to make firm quality of service guarantees,
Oftentimes such data is generated at too high a rate to be))
. . we cannot work with standard file systems or databases. These
captured on a single storage device, and must be broken : LT :
. . tems have the benefit of simplicity, but are not desigoed t
into multiple streams. Such streams need to be correla) A
, :) . . . work at near-full capacity, and suffer significant performoa
with each other in order to regain the entire data picture, S . . .
. . . degradation in such circumstances. A standard file system is
Any command to preserve data will be given accordin . . : A
. apable of handling this class of problem in certain rigidly
to timestamp only. : .) ;
: T . defined circumstances, but cannot do it well in the general
2) Variable-size, indexed data: case, and can never offer explicit quality of service gutsas
Variable-size, indexed data describes a data source whelrﬁ1 ' " fer explicit quality 9
. . without additional modification.
the data elements arrive at variable rates and have_. : : .
. . . . Since this problem involves constant and uninterrupted
variable sizes. Such events may also be indexed by time,.) .)
: . writing, we assume that any solution will need to remain
but also by other attributes as determined by the exgc . : . .
. . . ased on conventional rotational disk drives for the fagese
data type. Searching and preserving this data may

done according to any of the indexed attributes. This .I';\Sgle future. Solid state storage devices promise to become

a more difficult problem due to the non-fixed sizes an%romlnentln future years, but despite their potential vadth

data rates, in addition to the difficulties of a Comple%mp_rovements, we do not believe that It is wise t_o use a
index. evice with a limited number of write cycles in this task.

Write endurance for one of the latest top-rated Intel SSDs

While no existing system yet addresses this specific prok-rated at only 1-2 petabytes [12], an upper limit which
lem, the use of a ring buffer to gather sensor data is not neytir system would exceed in months. The use of SSDs for
both Antelope [4] and Data Turbine [5] use that approacthdexing purposes is viable in some circumstances, but we
However, neither system offers quality of service guarm@site anticipate that standard mechanical hard drives will corgi
only best-effort data recording. Other systems like thevngt to be necessary for main data storage.
traffic capturing “Time Machine” [6] deal with the problem
only by classifying and prioritizing data streams, and ghiog lIl. EXAMPLE USE CASES
what they can’t handle. Even then, there are no real timeTwo example use cases were briefly described in the last
guarantees in the system, and it promises only that it wikction, standing at opposite extremes of our problem space
record data at best-effort capacity, arranged by prigitie The first example use case is based on the type of data which

The COSS Storage System from Squid [7] utilizes a rintpe LWA generates: continuously streaming fixed size sensor
buffer based model, but also functions solely on a besteffalata. It arrives at an unchanging bandwidth, needs no indexi
basis in terms of bandwidth. The mechanism for “preservingihd is uniformly “large.” The second example use case is
data is simply to rewrite it again at the top of the buffer, g¥hi described by the problem of monitoring network traffic: each
is suitable for cache purposes but not scientific data captuelement is fairly small (often several thousand bytes os)les
Larger storage systems such as Lustre do not make quadityd non-fixed in size. Each data element must be indexed on
of service guarantees from moment to moment [8], which multiple variables other than time alone.
problematic in running a system where the data generatten ra We can easily imagine other combinations of data size, size
is very close to the maximum sustainable bandwidth. Largeariability, indexing requirements, and arrival rate adility.

However, in addressing the two extreme cases, we shouldfogher complication when constructing the initial indemda

able to handle anything in between. when performing subsequent searches on the data.
There are several commercial products which provide net-
A. Continuously Streaming Sensor Data work traffic monitoring ability, but without the quality of

This type of data arrives at the same rate forever, nev%qrvi_ce guarantees that we desir.e.(agide from the gugsantee
varying. The size and layout of each data element is knoWfovided by brute-force overprovisioning). The stratsgree
in advance, or perhaps we only treat it as a stream of byt8§€d to solve this problem are also useful in many other types
arranging it in whatever manner is most convenient. Intéyac of datg collection Where_ the rate or size is variable, or wher
with this type of data is extremely limited: we take it andrsto Many indexes are required.
it with a sequence number (timestamp) and need not worry
about it again until it comes time to overwrite it.

If an external process decides that the data is interestingVe designed Mahanaxar to meet three primary goals:
and should be saved, it only needs to tell the storage system) Provide a quality of service guarantee
that “timestamps X through Y should be preserved” and it is Our first priority is to provide a quality of service
done. The data is marked as preserved on the storage medium, guarantee for the incoming data stream, up to a declared
the ring-buffer recording is logically rearranged to bypése bandwidth. If the incoming data stream requires X MB/s
newly-preserved region, and operation continues normally of write bandwidth, we need to make sure that it has X

This model is relevant in a broad variety of scientific fields MB/s no matter what. If it exceeds that amount, we’ll
because it may take some time to determine whether the data do the best we can, but make no guarantees. All other
is interesting. A radio telescope may be capture a suddest bur activity on the disk must have lower priority, and be

IV. DESIGN

of activity, registering some cosmic event, but scientéto carefully managed so that it does not interfere with the
need to know what was happening in the time leading up to recording. We must not lose a single byte; all other tasks,
that event. including reading the data back off the drive, must wait.
This is perhaps the most basic use case possible in thi2) Use commodity components
problem space, but covers a wide variety of systems. We want our system to run on commodity hardware in a
variety of locations. In the case of the LWA project, the
B. Variable-Rate Indexed Network Traffic physical location may be a small outpost in the desert.

In order to detect intrusion attempts into a system, we V& cannot assume a high-end network infrastructure or
may wish to monitor network traffic on a particular router. storage backend, or highly reliable (and expensive) disk
The basic concept of the problem is the same: a firehose of ~drives. Conversely, if we do have a dedicated machine
data, most of which is unimportant, but which may become ~ Foom available, it would be foolish not to take advantage.
important based on future detection results. However, the [N NO case do we want to attempt to solve the problem
specifics of this problem are quite different from continsigu by “throwing more disks at it" until it works.
streaming sensor data. “Variable” best describes all therma 3) Never lose data
parameters. The datg that we collect_ can never be regenerated.

First, there is a natural ebb and flow of network traffic ~ |f there is a hardware failure, and there are always
depending on several factors, some of which can be predicted ~nardware failures, we need to be able to retrieve the data
and some of which cannot. For example, we can predict traffic ~ ©N demand. However, any reliability mechanism we use
amounts based on the time of day in certain regions of the ~MUSt not compromise the first goal, which is providing
world. However, we cannot necessarily predict the state of a quality of service guarantee.
society at any given time, as many things lead to increased ofhese goals guided our thinking when designing Ma-
decreased activity: news, sports, disasters, etc. Thingesa hanaxar. We will now present the specifics of our design,glon
moment to moment, and we can only make rough guessesvith the rationale and subsidiary goals behind each of them.
it.

The size of network traffic is also variable, as data elemerfts Staying Close to the Hardware
do not have a single fixed size. An IPv4 packet may range inOne of our first design decisions was that we needed to
size from a few bytes to tens of thousands of bytes. The datay very close to the hardware. In order to assure quality of
rate may hold steady at X MB/s, but the number of individuaervice, we need to know what the underlying hardware is
elements to consider and index can differ by a few orders edipable of, and more importantly, what it is actually doing a
magnitude at extreme ends of the spectrum. any given moment. This is particularly important in rotatib

The number of indices per data element is also variable. diisk drives, as performance can differ by several orders of
the case of an IP packet, time alone is not a sufficient index. hagnitude based on the access pattern. We need to carefully
be useful, we must also be able to index and search on aspetép out hardware capabilities before organizing our own
such as the source and destination addresses, the prdtacollayout. It may be that we need to avoid certain regions of
size, and similar characteristics. This extra indexingegoa the disk drive which cannot guarantee the data rate we need.

As an example of why we need this mapping of the hard- 120 ¢ - - " hva Read Spacd
ware, consider one of the hard drives we used for testings a 1. 110 Avg Write Speed =--==== E
TB drive from Western Digital (model number WD15EARS). 100 ¢ E
The first quarter of the drive (measured from the outermost ,, Zg 3 E
track) provided a constant minimum write bandwidth of 68 £ 20 b F
MB/s or better. The last quarter of the drive (innermostksjc £ e O ;
could manage a consistent minimum write bandwidth of only 2 50 E R
52 MB/s. The graph of its performance is shown in figure & 4o 3 3
2. Other disk drives we tested showed similar patterns, with 30 F 3
higher capacity drives showing a sharper dropoff towards th 20 E
“end” of the disk. 10F E
This information differs from hard drive to hard drive, even o5 25:00 5(;00 75;00 10'000 12'500 15000
on those of the same make and model. In fact, an identical Position in Disk, GB
hard drive to this one was approximately 2 MB/s faster over
most of the drive, and significantly slower near the end. &inc Fig. 2. Average read and write speeds on a particular disk

we want the best possible performance from our hardware, it i

critical to have this information for each drive. Contingiwith) . -

the hard drive above, we can safely advertise a bandwidthRndwidth. As long as we follow a basic doq tbe stu_pld _rule

perhaps 50 MB/s over the entire drive (allowing a bit of slacfor example, we should not use a chunk sizé that. IS sl.|g.htly

for other drive activity). However, if we use only 80% of thesma!lgr than twice the data element size), there is minimal

drive in the uppermost region, we can advertise a bandwidBgfficiency. L _ _ _

of around 65 MB/s instead, a significant improvement. ~_ BY Strictly maintaining this chunk size and forcing all
To take advantage of this knowledge of hardware, we mJ8foming data to conform to it, fragmentation problems are

use the disk without any interface layers. We envision agni Practically non-existent. The worst case scenario passibl

our prototype system into a specialized file system in tfigis: there are onIy_two “free” data chunks in the system, and
future, but for current purposes in our prototype, we traat t EVery other chunk is marked as preserved. These two chunks

Ji€ at exactly opposite ends of the disk, the outermost and
innermost tracks, and the disk head must constantly jumk bac
B. Chunk-Based Layout and forth between the two. Even in this scenario, since chunk

In order to take maximum advantage of our hardwar%zfes are large and immutable, seek .time between them is only
knowledge, we must restrict the data layout. Modem filesy@-tiny part: on the order of a few milliseconds, compared to
tems are generally good at data placement, but prone &gcut @ second for the chunk as a whole. _
fragmentation over time. This fragmentation problem is-dra The worst case scenario for a less strictly controlled fdesy
matically worse when operating in a system at 99%+ capaci§/™M Might scatter the chunks over the entire surface of tie di -
at all times, as we intend. Unless file placement is rigid§nywhere there was spare room, in the 99%-+ full system. This
planned out in advance, fragmentation will quickly add ugehavior drastically increases the total writing time heseaof
Bandwidth is very difficult to guarantee when related data t§€ large number of seeks. We wish to avoid this scenario at

scattered all over the surface of a disk rather than clusterd! costs. o
together. This approach presents no problems with fixed-rate con-

To solve this problem of data layout, we take a cue frofluously streaming data, since we can easily pick the ideal
the traditional 512-byte disk block, and declare that nadaghunk size based on the incoming data. If one “data element”
may be written in a segment smaller than the chunk sizZ8,the same size as one “data chunk,” we have no indexing
Chunk size is customizable based on the exact sort of déffficulties and no packing inefficiency.
that the System is Storing’ but as a genera' rule of thumb,When data elements are small and variable in Size, we
the bigger the chunk, the better. The time required to writeMust pack multiple elements into each chunk. This may create
KB to a disk drive is most often dominated by the seek tim@acking inefficiency as portions of each chunk are left wedill
and rotational de|ay as the disk head moves to the Corré@@ small to hold an additional data element. If chunk sizes
portion of the drive. These same factors are diminished iné€ chosen particularly unwisely, up to 50% of the drive may
near-insignificance when writing a single 50 MB chunk to € unutilized. However, this is easily mitigated by cargful
sequential area of the drive, where the actual writing tinfd100sing the chunk size, or by splitting elements into two
dominates. portions if necessary. A greater problem is indexing, which

It is well known that data sequentiality has a very larg@e address in a later section.
impact on overall bandwidth [13], and we attempt to exploit)
this factor as much as possible. There are certain disaalyasit C. Disk Structure and Consistency
in dealing only with very large chunks, but what we lose Standard file systems store their indexing information on
in flexibility and packing efficiency, we make up on rawthe disk itself for two main reasons. First, holding the enti

disk as a raw device and manage our own specialized lay

disk index in memory is at best inconvenient, and at worstch station is independent from the others and possibly not
impossible, depending on the amount of RAM. It also is nabnnected to a network, the simplest solution is probaldy th
necessary most of the time because large portions of the filest, and we need not consider it further, other than ergurin
system are not accessed for large periods of time. The sectimal drives are matched in their capabilities.
reason is far more important: in the event of a system crash, i The far more interesting case is a large system, where a
is far easier to recover file information from known portionsotal mirroring of drives is inefficient and uneconomicatkioo
of the disk than it is to traverse thentire disk partition at in terms of monetary cost and power consumed. A far more
mount and reconstruct the entire file system anew each tingdegant solution is available, and is an old familiar oneiRA

We can take substantial advantage in this area by noting thafA conventional RAID system provides fault-tolerance and
our chunk sizes are both uniformly large and determinilijica even certain performance advantages with the proper work-
placed. The only information that Mahanaxar requires ireordload, but is disadvantaged when a drive has failed and the
to understand physical disk layout is the chunksize, thebarm system must operate in degraded mode. Read times often
of chunks, and a possible list of skipped sections within thecrease dramatically since the data from an entire sefies o
disk. This information may be thought of as akin to therives must be reassembled for every single read. Writing an
superblock in a standard file system, and is the only dightirely new stripe of data into a degraded RAID system will
structure information which must be stored on the disk fitsabften not hurt performance, and ironically may even inceeas
—and even that may be skipped, if the information is providedslightly due to one less disk being involved.
by an external source prior to mount. Recalling that our system can be characterized as “write

The chunk index itself is only a list of sequence numbermnce, read maybe,” it becomes apparent that the disademntag
(timestamps) and a few state variables (for example, mgrkiof a RAID system may never actually come into play. When
whether the chunk is preserved), and must be kept in memarydisk fails, it is entirely possible that none of its data is
at all times in order to know which data is the next to expiréinteresting” and wenever need to reconstruct it. In fact,
It might also be kept on disk in event of a crash, but thail data stored on that disk will expire within a matter of
approach would mean frequent seeks to an index area, a wéstars unless the system is specifically instructed to pveser
of bandwidth. a section. We may need to regenerate a portion of the data,

The implications of these observations are that we can hdddt almost never will there be a case in which we have to
the entire index structure in memory, and neeyercommit regenerate an entire disk’s worth of data.
it to disk. We gain measurable performance advantages byThis technique works best when the data chunks in a
only writing the data itself, rather than constantly updgtan RAID group are all related to each other. For example, an
index or on-disk metadata. The only real disadvantage is ‘ideal” RAID group might be a single 300 MB/s stream
reconstructing the index if it is ever necessary, due tolarfai broken up into five 60 MB/s streams going to five different
of some sort. drives. In this case, an order to preserve data would be given

However, we also observe that this is a system which tis all drives simultaneously, and there would be no need
never supposed to go offline. If it does go offline, there has preserve unwanted data. Even reconstruction of data for
been a problem of some sort (perhaps through a power failurgprage elsewhere would be easy, since the same chunks from
and there must be a backup plan available to ensure that dhgaworking disks would be read in either case.
is not lost. Because of this, the startup time of a failedesypst ~ Unfortunately, if the data chunks are not related to each
is much less of an issue, even if it happens to take a few marher, there is a potential downside. If there are five separa
minutes than usual. streams of data, the preservation of any given chunk in a

The greater reconstruction time for the index is a smallgpristream would require that four other “unneeded” chunks be
to pay for increased overall performance. This is partityla saved for redundancy purposes. Collection of data would
true since in the event of a system crash, the disk drive wouldver be impaired and quality of service guarantees would be
need to be rescanned for consistency anyway. We do nmiaffected, but total capacity of the buffer would be reduce
anticipate this type of system ever shutting down in normahnecessarily. For this reason, it is preferable that chunk
conditions. a RAID group be highly related.

We are not limited to standard RAID alone, as any erasure-
correcting code would work equally well. Reed-Solomon

Storage systems fail from time to time, both from recowodes (as an example) are not often used in high-performance
erable crashes and via outright hardware failures. Whe thtorage because of a high computational overhead for emgodi
happens, we must take two things into account: the ongoiagd decoding. Because of our coordinated chunks and write-
data collection must not be disrupted, and we must be ableiittensive workload, such codes have a lower performance
recover lost data if the failed drive is entirely dead. penalty, and may be worth considering in future work.

This problem is easily addressed by redundant drives in)
a smaller system. For example, each LWA station generatifg Indexing
data at 72.5 MB/s may be best backed up by a redundant drivelt is difficult to design a general solution for the problem of
or a second computer entirely if funding is available. Sindadexing. If we only need to index a timestamp for each (large

D. Reliability and Recovery

data element, there are few problems. If we need to index fauuch smaller than the full data element, which would allow
different factors of a twenty byte data packet, indexing is @ single indexing disk to hold the indexes from several data
problem no matter how we try to solve it. Nonetheless, waisks at once. This is not a perfect solution since it depends
must be able to index data at its arrival rate, and searchoit a secondary disk being available, and creates potemtial n
efficiently upon request. reliability issues if the index is only stored on that onevdri

We address the simple problem first. If data elements df®wever, it allows a very large speedup in search speedhwhic
large and indices are few, we can keep an entire searchabi@y be worth the extra cost in some situations.
index in main memory. This describes the type of searchingWe have considered using an SSD for the secondary index
we must do with many types of continuously streaming sensirive. As previously discussed, SSDs are not suitable fta da
data, including the LWA, where the only required indexrives in our model, but may be for the far smaller indexes.
is time. For an example calculation, assume that our dathe vastly superior read bandwidth available also contebu
elements are 50 megabytes in size, and indexed by ant®@speedy searches on large datasets.
byte sequence number (timestamp). The entire index is onlyif we are only indexing a few well-ordered indices, we
a few hundred kilobytes in size when using an entire 1Have elected to handle the search within our own system.
terabyte drive. Reduce the data element size down to omlywe need to search on multiple variables which are not
a few kilobytes and the size of the entire index is only well ordered amongst each other, we determined that it would
few gigabytes in size, easily held in memory for standatsk best not to reinvent the wheel, and pass the problem to
commodity systems of 2010. another mechanism well suited to the task: a database. We

It is a far more complex problem when data elements ateeate a database anew with each search, using the indexing
tiny and there are multiple factors which must be indexethformation from whatever data chunks are needed. Follgwin
Consider the problem of storing IP packets that are index#te results of the search, the database is dropped entirely,
on source and destination addresses (4 bytes each), protoever being used for more time than it takes to complete the
(1 byte), and data length (4 bytes). Furthermore, assumie thearch. This “lazy search” allows us to optimize data sterag
each of these data packets are tiny for the worst-case ssenaaccording to our own bandwidth needs, but pass the search
20 bytes each. The indexing in such a scenario would rungeoblem to a mechanism better-suited to handling it.
hundreds of gigabytes. In fact, the indexing in such a case
would be 13/20 of the data itself. While this is an unlikely V. SCALING
scenario, a more reasonable scenario may still includedexin Our prototype system is mainly concerned with the problem
large enough such that it cannot be stored entirely in mabh guaranteeing quality of service from single data streams
memory. onto single disks. We can take multiple data streams ane rout

If there is no room in main memory for the index, we mughem to different disks and create RAID groups within the
clearly divert at least a portion of it to secondary storafe same system, but have not yet addressed the larger scaling
some sort. We have developed two ways of doing this, apdoblem involving multiple sites and systems. The LWA
implemented the first into Mahanaxar while we consider hoproject involves only 53 stations at the start, but what if it
to best implement the second. were to expand to 500 stations with more interconnectivity?

Out first solution is to attach an “index” segment to eactWe need to understand how to best scale upward.
chunk and commit it to disk alongside that chunk. We maintain Because our model is tied so closely to the hardware, we
a bird’'s-eye index in main memory, but details are stored @an easily scale up the data capture portion. Each disk is
disk. If nobody ever inquires about the data in that paréiculbound to a single data stream and need only concern itself
chunk, the index segment expires at the same time as the daith putting that data stream on that disk, and reading other
segment. If a search is performed, we can narrow down tkections as requested. An external process is responsible f
potential chunks as much as possible with our bird’s-eye,viegiving instructions to preserve or read data, and from tisk di
then read the necessary index segments for a more detapeiht of view, the only logical connection it has with any eth
search. data stream is when it happens to be in a RAID group.

Unfortunately, this search is necessarily quite slow beeau From a control point of view, hundreds or thousands of
our ability to read from the disk is limited by the quality ofstreams may be tied together, and a controller process may
service guarantees we make for incoming data. It is entiralged to preserve data over a thousand different disks at once
possible to miss the opportunity to preserve data because @e have treated this as a communications problem thus far
search is far slower than the speed at which incoming daad not focused on it, but we intend to fully explore it at a
overwrites old data. We can mitigate this effect, partjdtly later time. For the moment, we prefer to focus on the quality
marking all chunks currently being searched as temporariy§ service and individual indexing issues.
preserved.

This problem cannot be solved so long as indexing infor-
mation resides on the same disk as the data itself, which ledOur long-range intention is to create a specialized filesyst
us to a second solution: a secondary disk designed to staral interface layer, but for prototype and testing purposes
indexing information only. Indexing information is (uslydl first created Mahanaxar. It is a multithreaded process which

V1. PROTOTYPEARCHITECTURE

Sentinel Values

EERLEEEEE T

Data One Element

A
-

Metadata ‘

Indexing

Fig. 3. Data chunk layout

runs in userspace and accesses disk drives as raw devioas. element may be equal to one chunk. If sizes are small,
Multiple processes may run on the same machine, one procksadreds or thousands of data elements may be placed into
per disk, and an additional process may be configured dosingle chunk. Default primary indexing is based entirely
accept multiple data streams and combine them for RAI&ound chunks, and is made up of a pair of timestamps. The
reliability purposes. All access to a given diskistbe through first marks the time at which the first element started argyin
its associated process in order to manage the bandwidth. Eand the second marks the time at which the last element has
process/disk is governed by a configuration file that spegifidully arrived. Other indexing schemes are possible, and see u
among other things, the chunk size, the element size rande, anly a single sequence number for LWA-type data.
the method of indexing. State can be restored from a shutdowrThe chunk size may be configured according to system
or crashed state by scanning and re-indexing the disk. requirements, but we have found that larger chunks provide
Each process runs several threads, of which the two mdsé best performance. We prefer to use a rule-of-thumb that
important are data processing and I/O. The data processorg chunk should be approximately the amount that the disk
thread is responsible for arranging the data elements in&tkes one second to write to disk. In order to minimize wasted
chunks and indexing it. An example data chunk layout capace, chunk size should be arranged to be a close multiple of
be seen in figure 3. The components are: the typical element size, and including a margin for metadat
1) Sentinel Valuesare intended to ensure that a chunk igand indexing information. If elements a2 MB each, a chunk
marked inconsistent if the system crashes in the middiize of2X — 1 MB would be a very poor choice.
of a write. If the main memory is of sufficient size and elements are
2) Metadata is present for system restart purposes, arsilfficiently large, each element can be individually incekg
describes the exact layout of the chunk index and settirhestamp and possibly other “primary ids.” Mahanaxar does

data elements. its best to store as much indexing information as possible in
3) Indexing is described in a previous section. main memory, so that searches can be performed quickly, but
4) Data and Elementsare where the actual data itself isin certain scenarios, it may not be able to index anythingemor
stored. than timestamp ranges in main memory.

The second main thread is intended for 1/0. Our I/O model Unfortunately, in order to maintain rigid chunk size and
works on a simple priority scheme: if there is a chunk of dagvailable bandwidth, we must save an entire chunk at a time,
ready to be put on disk, it gets first priority and is written agven if only a single small element of that chunk is actually
soon as possible. Data is only read if there is no chunk whiglesired. We are currently working on a way to accumulate
currently needs to be written. individual elements on the fly as they pass under the disk

This method produces a jagged access pattern, especibyd for later storage in dedicated chunks.
for reads, since nothing may be read for some time, and then
an entire chunk is read and delivered all at once. This is an
unfortunate but necessary effect of making quality of smrvi We designed our tests to focus on the raw bandwidth under
guarantees and maximizing bandwidth, since we do not wiskveral different workloads. We used several differerkglen
to fritter away disk head time seeking back and forth over tlike same machine and achieved similar results for each disk,
disk in pursuit of a smoother curve on a bandwidth graphdjusted for its available bandwidth. All the results preed
Long-term trends average out the bandwidth into smookiere are based upon one particular disk (profiled in figure 2)
curves, which we feel is acceptable when considering thersheo that we make fair bandwidth comparisons between tests.
amounts of data we are attempting to deal with. In the short-Our testing machine used an Intel Core 2 Quad processor
term view, while a read request is never entirely starved,dtocked at 2.83 GHz, with 8 GB of main memory, and an
may be forced to wait some time. operating system of Debian 5.0 (“lenny”). The particulaskdi

As each data element arrives at Mahanaxar, it is immediateilyed for these results was a Western Digital Caviar Green
indexed and placed into a chunk. If element sizes are largé, 1.5 (decimal) TB advertised capacity. Our own reported

VIl. TESTING PROCEDURE

(a) Mahanaxar (b) ext2 file system

T T T T T T T T T T T T T IO o S L L L L L B L R L L A
70 B /V’A</>,A,,‘,A>,,VA'-VA»VVAV-VA—>,‘,,.AVV-VA,,,; 0k A Al Bned
A»,,Aw"’ A A AT A
60F-—H = = = = = = = = = = = = = 60 d--p- 2
£ £
fos] fos]
s 50 F S 50 F .
. Write Speed —&—
£ 40 ¥Vr|tg gpeeg ° £ 40 Read Sgeed ---0---
E - ead Speed ---o--- B 3 ; At e
E Combined Bandwidth - s Combined Bandwidth --=--
S] Data Loss v
c 30 F S 30F
< <
« 20 F E . 20 F 5--4
/ef—fa"gﬂa/e/
10 E '/./4\‘,/of”o———&rt—7y7—0—»0»_ 10 E /0/@»0“8/ T
'.‘/.’" /‘9‘/6— . B N KA A
1 PR PO R TP S T R RPN NP RPN B Y Or@’izg.v.‘Y'.Y.Y.|.|.|.|.|.|.|.|.
2 4 6 8

0 e 1
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 10 12 14 16 18 20 22 24 26 28 30
Requested Read Speed, MB/s Requested Read Speed, MB/s

Fig. 4. Comparison of Mahanaxar and ext2 filesystem with aoriring data rate of 60 MB/s and increasing requested reagtispe

measurements shall be understood to use the binary coomengioor as we approached the limits of the disk. The initial
of KB, MB, etc. population of our database on the first cycle of data was of
The raw write bandwidth of this particular disk averagedomparable speed to our ext2 based system, but performance
from 50 MB/s to 70 MB/s, and its read bandwidth from 57uickly dropped to less than a third of ext2 when constantly
MB/s to 115 MB/s. Upon profiling the drive, we determine@xpiring old data in favor of new elements. We therefore
that the read bandwidth decreased in an approximatelyrlinééopped testing against a database model and focused on our
fashion from its peak at the outermost tracks of the drive @@mparisons against the regular filesystem.
115 MB/s to about 70 MB/s at a point about 80% into the Our primary testing procedure was to select various element
drive. Bandwidth dropped sharply in the last 20% of the drivend chunk sizes, then measure the bandwidth in both writing
to a low of around 50 MB/s. Meanwhile, the write bandwidtland reading. We partitioned the “uppermost” 80% of the drive
only dropped from 70 MB/s to 65 MB/s in that same 80% ofind ran tests utilizing the entire space for some of the tesul
the disk, and sharply decreased in the last 20%. here. For others, we created smaller partitions withinspate
Due to this behavior, we elected not to use thi orderto gather data of a finer grain. All results are gattier
lower/innermost portion of the drive. This allows us to offefrom an “aged” system which has been in operation for several
a sustained write bandwidth of 60 MB/s with 5-10 MB/s leffull cycles over the space of the disk, unless otherwisechote
available for reading. This gave us a usable disk size of abouWe present here only those results for which our comparison
one (binary) terabyte. ext? filesystem achieved stable performance. Certain of our
We disabled disk write caching for our testing so that wkests led to an ever-decreasing performance over time as the
could be (reasonably) sure that the data was on disk whemtire system continued to age, and continued that decrease
we thought it was, and we ensured that the disk was fuliyver many full disk cycles. For example, when dealing with
synchronized with each chunk that was written. Interestinghighly variable element sizes, the standard filesystem bad t
disabling the write cache slightly improved overall writeconstantly delete a variable number of elements and create
bandwidth on our disks. new elements of different size. Because the file system was
Our primary comparisons were made against the ext2 fierating at 99%-+ of capacity (as intended), fragmentation
system utilizing flat files. We also tested against ext3 ardoblems built up very quickly and data locality was destay
XFS, each of which had worse performance than ext2, whichBecause of this characteristic, we hypothesize that fragme
we attribute to their journaling nature. Journaling fileteyss tation would continue until blocks belonging to the same ele
impose unnecessary bandwidth on the disk for problems ment would only be physically consecutive by happenstance.
this nature. In order to give the file system write caching arherefore, we discontinued these tests and instead used a
opportunity to reorder its disk access patterns as neggssaonstant element size which we overwrote in-place on the
we refrained from explicitly sync’ing to disk after each ey standard file system in order to give it as much of an advantage
as we did with our own system. Instead, we only explicitips possible.
synchronized to disk every few hundred megabytes, whichOur own system, Mahanaxar, is designed to deal with this
was several seconds worth of writing. We would prefer tgariable element size without changing its mode of openatio
have tight sync’ing to disk to keep the same consistency asd thus its performance never declined over time. Because
Mahanaxar, but we discovered that ext2 performed muchrbefite design packs variable element sizes into fixed chunlssize
when explicit synchronization was rare. the graphs presented in the next section are identical ðo
We had also intended to compare against a pure databfieen our variable element size testing, except in “packing
model, but quickly discovered that performance was extlgmeefficiency.”

(a) Comparison of read bandwidth on first cycle (b) Closeup of read bandwidth after several cycles

70 prerrrrre LR LA LR LR L 14 P T T T T T
v 50 F E »w 10 | B
fos] o)]
w0 Write Speed (Both) z 8
- = rite Speed (Both) —— - - B 7
% Mahanaxar Read Speed ===---- % Mahanaeitazr sggg gpggg _______
2 30F ext2 Read Speed -+ E 2 6 | p e
2 2
< & TN
B 20 Fremfeanyna.,. @ 4 TN 4
of " e T 2+ RN,
O | R | P | R | A | R OI....I....I....I....I....I....I....I....I....-
0 2000 4000 6000 8000 10000 12000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Position in disk, in GB Position in a particular partition, in MB

Fig. 5. Performance of Mahanaxar versus a regular filesystém strict priorities, overall view on first cycle (a), andbseup view of a single partition
after multiple cycles (b)

VIIl. RESULTS has a slightly higher bandwidth on reading, the two systems
are largely equivalent for the first “cycle” through.

Figure 4 is a basic comparison of Mahanaxar versus a
normal ext2 filesystem with no modifications. The incoming Fart (b) shows what happens after several cycles, and
uses on the read performance only (write performance

data stream has a bandwidth of 60 MB/s. The element size $§YS ,
ains at 60 MB/s for both systems). This test takes place

also set to be 60 MB. An external process is attempting to re5d") = e) ,
data from the disk at increasing speeds along the x-axis. THhin @ single partition in order to limit the region of thes

total available bandwidth of the disk drive in this regiorntoé Which is used. Here, Mahanaxar maintains a read performance
disk has ample capacity to write at 60 MB/s, and read at up $10-12 MBIs, while the ext2 system drops down to about 2-4
12 MBIs if the writing and reading are properly coordinated\./]B/S_ before it stablllze.s. As_ mentioned before, gll elersent

The values shown on the graph are the average read ahIS test are overwntt_en in placg. We also wish to note
write bandwidths of Mahanaxar and the ext2 filesystem over twe _USEd the same in-memory index for the ext2 system
entire partition. The partition is already populated witis&ing as we did for Mahanaxar._ If we Iet_the ext2 system rely on
data (for several cycles) at the start of the test. Mahanai'zjzl‘?S_yStem metadata only,_ in determining which da_lta eleme_nt
maintains a constant write bandwidth of 60 MB/s no matt&*P'"®: performance continues to decrease steadily ave. ti
how much bandwidth the external reading process requestst0or both the graphs in figure 5, the x-axis has a slightly
Up to the physical limitations of the disk drive, Mahanaxa#lifferent interpretation for each system. For Mahanaxse, t
can also provide the requested read speed. x-axis represents the literal position of the data withie th

By contrast, the ext2 based filesystem starts falling behiféfk or partition. In the ext2 filesystem approach, the >saxi
the required 60 MB/s write bandwidth, even when the rely represents the position in the cycle for that particstet
process is only attempting to read at 2 MB/s. By the timef dqta. The literal position within the (_jlsk is determineg b _
the read process is attempting to read at 10 MB/s (which tHe filesystem's data placement techniques, though the unit
disk can easily handle if managed correctly), over 5% of ti¥€ identical. We focused on a smaller partition f_or part (b)
incoming data is lost due to insufficient bandwidth. Even &painly to ensure that the ext2 approach stayed in the same
that point, the reading process still can’t reach the regaesSmall region of the disk for a more limited test.

10 MB/s read speed, being held to about 8.5 MB/s. Figures 4 and 5 were both carried out with a 60 MB

The reason for this disparity is that a standard ext2 filesyglement size, which is what a regular filesystem can handle
tem manages its bandwidth “fairly” rather than managing Rest: large contiguous files written and read as one unitrgig
in a way to provide quality of service. Mahanaxar is abl€ shows the results when we reduce the element size to 1 MB,
to throttle the read requests and prioritizes writes elgtirebut leave in the other enhancements to the regular filesystem
Because of this disparity, we decided to introduce a simil#fith regards to indexing and priorities. This results obttest
mechanism for the standard filesystem which ensures writiage shown on a single partition for detail, rather than oker t
always has priority. whole drive.

Figure 5 shows two different views of the comparison Mahanaxar retains a write bandwidth of 60 MB/s, and has
against a filesystem with strict priorities introduced, ricking an available read bandwidth of nearly 20 MB/s in this pamtiti
Mahanaxar. The element size remains at 60 MB/s for this tefdr a total I/O bandwidth of around 80 MB/s. This performance
Part (a) shows the initial populating of the disk. In otherds) is practically identical to when it was working with 60 MB
this is a “fresh” system on its first round. Both systems ate alelements because it combines those elements together(nto 6
to maintain a 60 MB/s write speed here. Although Mahanax®tB chunks. This same pattern holds for any element size, as

(a) Mahanaxar (b) ext2

80 Fo o I sof 7 ext2write Speed — — -
ext2 Read Speed -------

70 F E 70 F ext2 Combined Bandwidth -------- E
£ 60 » 60 F E
s s
= 50 ¢ Mahanaxar Write Speed ——— = 50 ¢ E
5 a0 E Mahanaxar Read Speed ------- E] a0k E
% Mahanaxar Combined Bandwidth -------- % ,,
S 30F S 30F E
0 o0

20 o e [—mmmmmmmmmmmmm e 20 F E

10 E 10 F E

O PR SR SR S SR S N SN SR S (N SR S S S IS S SR S N S S S O = Lo 1 1 1 1

0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
Progress through partition, in MB Progress through partition, in MB

Fig. 6. Comparison of Mahanaxar and a regular filesystem stitot priorities, 1 MB element size. The lines in (b) arereriely close to the lines at 35
and 0, respectively.

we tested in going down to a mere 20 byte element size. capacity, they cannot maintain as high an overall bandwidth
However, the performance of the ext2 filesystem is drasis Mahanaxar. Even with the ideal large element sizes,
cally reduced with 1 MB elements. If we do not explicitly synstandard filesystems can only come “close” to Mahanaxar's
chronize the write cache to disk, the filesystem can "prétenderformance. When element sizes are smaller or variable,
to keep up for quite some time, but it eventually collapsgserformance of standard filesystems drops drasticallytlzey
under its own weight. Synchronizing after every element annot handle variable element sizes in a 99%-+ full system
unrealistic, however, and we only forced a sync to disk evesyzes at all.
few hundred elements (megabytes) to keep it honest. Our future intentions are to turn this project into a full
We found that the maximum sustainable write bandwidipecialized file system, develop an API to interact with it,
for the ext2 filesystem was about 35 MB/s. At 38 MB/s andnd develop an interface allowing an arbitrary number ohsuc
above, it slowly starts falling behind over time and eveliyua systems to operate in concert to capture arbitrarily laraga d
loses data as it runs out of buffer space. At 35 MB/s it loses Bgreams. We also need to run performance tests on various
data over the course of many cycles, having stabilized, indyipes of rebuilding after hardware failure, and experinveit
can read off data at around 1 MB/s. This combined bandwidtising separate “index” drives to improve search perforraanc
of less than 36 MB/s compares very poorly with Mahanaxarsastly, we need to address the problem of preserving individ
performance of nearly 80 MB/s combined bandwidth. Thgal data elements within a chunk, and develop a system for
performance difference between Mahanaxar and flat files oRlyalability.
increases as the element size shrinks even further. However, we feel that the raw performance numbers are
When we tested variable element sizes on the ext2 filesggund, and promise a substantial improvement over therturre
tem, performance decreased steadily over time without afystems which cannot offer any quality of service guarantee
pearing to stabilize at any point, and thus we do not haygr this type of problem.
a proper comparison to make against the steady performance

of Mahanaxar under the same circumstances. However, the REFERENCES
performance graph of Mahanaxar when run with variable
element sizes is identical to that of 6 (a). [1] A/53: ATSC Digital Television Standard, Parts 1-6, 20@vanced
Television Systems Committee, Inc., 3 January 2007.
IX. CONCLUSION [2] L. C. Grid, “Gridbriefings: Grid computing in five minutgsAugust
2008.

The performance qf Mahanaxgr show_s that is h_as a}‘ clgfgr] “hitp:/www. phys.unm.edu/ wajindex.html.”
edge over standard filesystems in the high-bandwidth “writgr] Antelope: ARTS configuration and operations manoulder Real
once, read rarely” workload. By staying very close to the Time Technologies, Inc., 3 November 1998.

S. Tilak, P. Hubbard, M. Miller, and T. Fountain, “The gnbuffer
phyS|caI hardware and a“gmng our workload to match, we ar@ network bus (rbnb) dataturbine streaming data middlewaresifiviron-

able to provide real quality of service guarantees to meeta s mental observing systems,” i-Science Bangalore, India, 10/12/2007

of hard real-time deadlines in a high-turnover, high-baiaithv 2007.

environment. We are able to reach performance levels on pi&} S; Komexl, V. Paxson, H. Dreger, A Feldmann, and R. Samm
. . s . . Building a time machine for efficient recording and retaéwf high-

with the tested maximum of individual hard drives, though yolume network traffic,” inIMC '05: Proceedings of the 5th ACM

this depends on generating disk profiles on a per-drive basis SIGCOMM conference on Internet Measuremererkeley, CA, USA:

in order to maximally exploit the hardware. USENIX Association, 2005, pp. 23-23.

h dard fil d d A. Chadd, “http://devel.squid-cache.org/coss/costes.txt,” 2005.
Even when standard filesystems are adapted to pr|0r|t| DataDirect Networks, “Best practices for architectirag lustre-based

data streams and enhanced with a more appropriate indexing storage environment,” DataDirect Networks, Tech. Rep0820

El

[20]

[11]

[12]

[13]

[14]

[15]

A. Molano, K. Juvva, and R. Rajkumar, “Real-time filesfsis. guaran-
teeing timing constraints for disk accesses in rt-machThe 18th IEEE
Real-Time Systems Symposiidacember 2-5, 1997 1997, pp. 155-165.
J. Wu and S. Brandt, “Providing quality of service sugpa object-
based file system,” i”4th IEEE Conference on Mass Storage Systems
and Technologies24-27 Sept. 2007 2007, pp. 157-170.

A. Povzner, T. Kaldewey, S. Brandt, R. Golding, T. M. Vgorand
C. Maltzahn, “Efficient guaranteed disk request schedudiit fahrrad,”
in Eurosys '08: Proceedings of the 3rd ACM SIGOPS/EuroSysaan
Conference on Computer Systems 2008ew York, NY, USA: ACM,
2008, pp. 13-25.

Intel X25-E SATA Solid State Drive Product Reference SRE&€9.

W. W. Hsu, A. J. Smith, and H. C. Young, “The automatic noyement
of locality in storage systems&CM Trans. Comput. Systol. 23, no. 4,
pp. 424-473, 2005.

J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A.8#bhatz, “Disk
scheduling with quality of service guarantees,” |EEE International
Conference on Multimedia Computing and Systef41 June 1999
1999, pp. 400-405 vol 2.

R. Rangaswami, Z. Dimitrijevi¢, E. Chang, and K. Sckex) “Building
mems-based storage systems for streaming medi@hs. Storage
vol. 3, no. 2, p. 6, 2007.

